Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Reducing buildings’ carbon emissions is an important sustainability challenge. While scheduling flexible building loads has been previously used for a variety of grid and energy optimizations, carbon footprint reduction using such flexible loads poses new challenges since such methods need to balance both energy and carbon costs while also reducing user inconvenience from delaying such loads. This article highlights the potential conflict between electricity prices and carbon emissions and the resulting tradeoffs in carbon-aware and cost-aware load scheduling. To address this tradeoff, we propose GreenThrift, a home automation system that leverages the scheduling capabilities of smart appliances and knowledge of future carbon intensity and cost to reduce both the carbon emissions and costs of flexible energy loads. At the heart of GreenThrift is an optimization technique that automatically computes schedules based on user configurations and preferences. We evaluate the effectiveness of GreenThrift using real-world carbon intensity data, electricity prices, and load traces from multiple locations and across different scenarios and objectives. Our results show that GreenThrift can replicate the offline optimal and retains 97% of the savings when optimizing the carbon emissions. Moreover, we show how GreenThrift can balance the conflict between carbon and cost and retain 95.3% and 85.5% of the potential carbon and cost savings, respectively.more » « lessFree, publicly-accessible full text available June 30, 2026
-
Content Delivery Networks (CDNs) are Internet-scale systems that deliver streaming and web content to users from many geographically distributed edge data centers. Since large CDNs can comprise hundreds of thousands of servers deployed in thousands of global data centers, they can consume a large amount of energy for their operations and thus are responsible for large amounts of Green House Gas (GHG) emissions. As these networks scale to cope with increased demand for bandwidth-intensive content, their emissions are expected to rise further, making sustainable design and operation an important goal for the future. Since different geographic regions vary in the carbon intensity and cost of their electricity supply, in this paper, we consider spatial shifting as a key technique to jointly optimize the carbon emissions and energy costs of a CDN. We present two forms of shifting: spatial load shifting, which operates within the time scale of minutes, and VM capacity shifting, which operates at a coarse time scale of days or weeks. The proposed techniques jointly reduce carbon and electricity costs while considering the performance impact of increased request latency from such optimizations. Using real-world traces from a large CDN and carbon intensity and energy prices data from electric grids in different regions, we show that increasing the latency by 60ms can reduce carbon emissions by up to 35.5%, 78.6%, and 61.7% across the US, Europe, and worldwide, respectively. In addition, we show that capacity shifting can increase carbon savings by up to 61.2%. Finally, we analyze the benefits of spatial shifting and show that it increases carbon savings from added solar energy by 68% and 130% in the US and Europe, respectively.more » « less
-
As computing demand continues to grow, minimizing its environmental impact has become crucial. This paper presents a study on carbon-aware scheduling algorithms, focusing on reducing carbon emissions of delay-tolerant batch workloads. Inspired by the Follow the Leader strategy, we introduce a simple yet efficient meta-algorithm, called FTL, that dynamically selects the most efficient scheduling algorithm based on real-time data and historical performance. Without fine-tuning and parameter optimization, FTL adapts to variability in job lengths, carbon intensity forecasts, and regional energy characteristics, consistently outperforming traditional carbon-aware scheduling algorithms. Through extensive experiments using real-world data traces, FTL achieves 8.2% and 14% improvement in average carbon footprint reduction over the closest runner-up algorithm and the carbon-agnostic algorithm, respectively, demonstrating its efficacy in minimizing carbon emissions across multiple geographical regions.1more » « less
-
As edge computing and sensing devices continue to proliferate, distributed machine learning (ML) inference pipelines are becoming popular for enabling low-latency, real-time decision-making at scale. However, the geographically dispersed and often resource-constrained nature of edge devices makes them susceptible to various failures, such as hardware malfunctions, network disruptions, and device overloading. These edge failures can significantly affect the performance and availability of inference pipelines and the sensing-to-decision-making loops they enable. In addition, the complexity of task dependencies amplifies the difficulty of maintaining performant and reliable ML operations. To address these challenges and minimize the impact of edge failures on inference pipelines, this paper presents several fault-tolerant approaches, including sensing redundancy, structural resilience, failover replication, and pipeline reconfiguration. For each approach, we explain the key techniques and highlight their effectiveness and tradeoffs. Finally, we discuss the challenges associated with these approaches and outline future directions.more » « less
-
Cloud platforms are increasing their emphasis on sustainability and reducing their operational carbon footprint. A common approach for reducing carbon emissions is to exploit the temporal flexibility inherent to many cloud workloads by executing them in periods with the greenest energy and suspending them at other times. Since such suspend-resume approaches can incur long delays in job completion times, we present a new approach that exploits the elasticity of batch workloads in the cloud to optimize their carbon emissions. Our approach is based on the notion of carbon scaling, similar to cloud autoscaling, where a job dynamically varies its server allocation based on fluctuations in the carbon cost of the grid's energy. We develop a greedy algorithm for minimizing a job's carbon emissions via carbon scaling that is based on the well-known problem of marginal resource allocation. We implement a CarbonScaler prototype in Kubernetes using its autoscaling capabilities and an analytic tool to guide the carbon-efficient deployment of batch applications in the cloud. We then evaluate CarbonScaler using real-world machine learning training and MPI jobs on a commercial cloud platform and show that it can yield i) 51% carbon savings over carbon-agnostic execution; ii) 37% over a state-of-the-art suspend-resume policy; and iii) 8 over the best static scaling policy.more » « less
An official website of the United States government

Full Text Available